

CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-X

Subject: MATHEMATICS

Chapter Name : Polynomials (Chap : 2)

Total : 4 Marks (expected) [MCQ(1)-1 Mark, SA-II(1)-3 Marks]

Level - 2 (Higher Order)

MCQ Type :

1. If the zeroes of the quadratic polynomial $x^2 + (a+1)x + b$ are 2 and -3, then
(A) $a = -7, b = -1$ (B) $a = 5, b = -1$ (C) $a = 2, b = -6$ (D) $a = 0, b = -6$

(Hints : Put $x = 2$ and -3 . Solve equations for a and b)

2. If $p(x) = ax^2 + bx + c$ and $a + b + c = 0$, then one zero is
(A) $-b/a$ (B) c/a (C) b/c (D) none of these

(Hints : Put $b = -(a+c)$ and factorise.)

3. The number of polynomials having zeroes as -2 and 5 is
(A) 1 (B) 2 (C) 3 (D) more than 3

(Hints : Number of polynomials is infinite)

4. The graph of the polynomial $ax^2 + bx + c$ is a downward parabola if
(A) $a > 0$ (B) $a < 0$ (C) $a = 0$ (D) $a = 1$

5. If a polynomial of degree 4 is divided by quadratic polynomial, the degree of the remainder is
(A) ≤ 1 (B) ≥ 1 (C) 2 (D) 4

6. The number of zeroes that polynomial $f(x) = (x - 2)^2 + 4$ can have is :
(A) 1 (B) 2 (C) 0 (D) 3

(Hints : No real values of x so that $y = 0$)

SA-II Type :

7. If the sum of square of the zeroes of the polynomial $x^2 + px + 45$ is equal to 135, find the value of p .

(Hints : $\alpha + \beta = -p$, $\alpha\beta = 45$)

8. If the zeroes of $p(x) = 2x^2 - 6x - 3$ are $\frac{3 \pm \sqrt{k}}{2}$, where k is a real number. Find 'k'.

(Hints : Product of zeroes = $\frac{-3}{2}$)

9. Find the value of k such that the polynomial $x^2 - (k+6)x + 2(2k-1)$ has the sum of its zeroes equal to half of its product.

(Hints : $\alpha + \beta = k + 6$, $\alpha\beta = 2(2k - 1)$)

10. Obtain zeros of $4\sqrt{3}x^2 + 5x - 2\sqrt{3}$ and verify relation between its zeroes and coefficients.

(Hints : $\alpha + \beta = \frac{-5}{4\sqrt{3}}$, $\alpha\beta = \frac{-2\sqrt{3}}{4\sqrt{3}}$)

11. -5 is one of the zeros of $2x^2 + px - 15$, zeroes of $p(x^2 + x) + k$ are equal to each other. Find the value of k .

(Hints : Put $x = -5$ to find p . For equal roots $b^2 = 4ac$.)

12. If α and β are zeroes of the polynomial $x^2 + 4x + 3$, find the polynomial whose zeroes are $1 + \frac{\beta}{\alpha}$ and $1 + \frac{\alpha}{\beta}$.

(Hints : $\alpha + \beta = -4$, $\alpha\beta = 3$)

ANSWER

1. (D)	7. ± 15
2. (B)	8. 15
3. (D)	9. $k = 7$
4. (B)	10. $\frac{\sqrt{3}}{4}, -\frac{2}{\sqrt{3}}$
5. (A)	11. $\frac{7}{4}$
6. (C)	12. $3x^2 - 16x + 16$

